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Abstract

The human intestinal microbiota is essential for the conversion of the dietary

lignan secoisolariciresinol diglucoside (SDG) via secoisolariciresinol (SECO) to

the enterolignans enterodiol (ED) and enterolactone (EL). However, knowledge of

the species that catalyse the underlying reactions is scant. Therefore, we focused

our attention on the identification of intestinal bacteria involved in the conversion

of SDG. Strains of Bacteroides distasonis, Bacteroides fragilis, Bacteroides ovatus and

Clostridium cocleatum, as well as the newly isolated strain Clostridium sp. SDG-

Mt85-3Db, deglycosylated SDG. Demethylation of SECO was catalysed by strains

of Butyribacterium methylotrophicum, Eubacterium callanderi, Eubacterium limo-

sum and Peptostreptococcus productus. Dehydroxylation of SECO was catalysed by

strains of Clostridium scindens and Eggerthella lenta. Finally, the newly isolated

strain ED-Mt61/PYG-s6 catalysed the dehydrogenation of ED to EL. The results

indicate that the activation of SDG involves phylogenetically diverse bacteria, most

of which are members of the dominant human intestinal microbiota.

Introduction

The human intestinal tract harbours complex bacterial

communities, which constantly interact with host cells and

dietary factors. Owing to their metabolic potential, these

communities play a key role in energy balance and in the

metabolism of undigested food components, with presumed

consequences for health (Backhed et al., 2005). Lignans, for

example, are phyto-oestrogens that are metabolised by

intestinal bacteria (Cassidy et al., 2000). Secoisolariciresinol

diglucoside (SDG) is one of the most abundant dietary

lignans. It is found in a variety of food items, with particu-

larly high concentrations in flaxseed (Mazur, 1998). SDG is

of interest because of its possible implications for the

prevention of breast and colon cancer (Chen et al., 2003),

atherosclerosis (Prasad, 1999) and diabetes (Prasad, 2001).

The underlying mechanisms include antioxidative and en-

zyme-inhibiting properties (Wang et al., 1994; Kitts et al.,

1999), as well as oestrogen-dependent activities (Schottner

et al., 1998; Mueller et al., 2004). The enterolignans enter-

odiol (ED) and enterolactone (EL) are produced from SDG

by intestinal bacteria and show enhanced biological activities

(Fig. 1) (Borriello et al., 1985; Prasad, 2000; Kilkkinen et al.,

2002; Bowey et al., 2003; Jacobs et al., 2005). Hence, the

intestinal microbiota is essential for SDG activation. The

bacterial transformation of SDG includes deglycosylation,

demethylation, dehydroxylation and dehydrogenation

(Wang et al., 2000). The conversion of secoisolariciresinol

(SECO), the aglycone form of SDG, results from the interac-

tion between dominant and subdominant anaerobic bacter-

ial communities (Clavel et al., 2005). Two isolated faecal

bacterial strains, Peptostreptococcus productus SECO-Mt75m3

and Eggerthella lenta SECO-Mt75m2, catalyse the demethy-

lation and dehydroxylation of SECO, respectively. Although

their occurrence was related to the proportion of EL-produ-

cing communities in faeces, the diversity of SECO-metabo-

lizing bacteria is certainly not restricted to these two strains.

Because an understanding of the mechanisms underlying

the bacterial production of enterolignan is a prerequisite to

studying the health effects of dietary lignans, we aimed at

describing SDG-converting communities at the species level.

Specifically, we intended to identify intestinal anaerobic

bacterial strains that catalyse one of the four reactions

underlying the conversion of SDG to EL. This was achieved

on the one hand by the isolation of strains from human

faeces, and on the other hand by the screening of phylogen-

etically or functionally related strains obtained from bac-

terial culture collections.
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Materials andmethods

Chemicals

Secoisolariciresinol diglucoside was isolated from flaxseed

(Degenhardt et al., 2002). SECO was purchased from Sigma-

Aldrich (Taufkirchen, Germany). ED and EL were purchased

from the VTT Technical Research Centre of Finland (Espoo,

Finland). These compounds were racemic mixtures. Stock

solutions of SECO (100 mM), ED and EL (50 mM) were

prepared in MeOH. Stock solutions of SDG (100 mM) were

prepared in H2O.

Culture conditionsfor strainsobtained from
bacterial culture collections

Strictly anaerobic culture techniques were used (Attebery &

Finegold, 1969; Breznak & Costilow, 1994). Freeze-dried

cultures of Butyribacterium methylotrophicum DSM 3468T,

Clostridium amygdalinum DSM 12857T, Clostridium coclea-

tum DSM 1551T, Clostridium ramosum DSM 1402T, Clos-

tridium saccharolyticum DSM 2544T, Clostridium scindens

DSM 5676T, Eggerthella lenta DSM 2243T, Enterobacter

cloacae DSM 30054T and Eubacterium callanderi DSM

3662T were revived as recommended by the supplier

(DSMZ, Braunschweig, Germany). Cryostocks or grown

cultures of Acetobacterium woodii DSM 1030T, Bacteroides

distasonis DSM 20701T, Bacteroides fragilis DIfE-05, Clostri-

dium barkeri DSM 1223T, Clostridium coccoides DSM 935T,

Clostridium spiroforme DSM 1552T, Eubacterium limosum

DSM 20543T, Peptostreptococcus productus DSM 2950T, P.

productus DSM 3507, Ruminococcus hansenii DSM 20583T,

Ruminococcus obeum ATCC 29174T and Ruminococcus schin-

kii DSM 10518T were obtained from the collection of the

German Institute of Human Nutrition Potsdam-Rehbrücke

or the French National Institute of Agricultural Research.

The strains were grown in Brain Heart Infusion (Merck,

Darmstadt, Germany) supplemented with 5 g L�1 yeast

extract and 5 mg L�1 haemin (YHBHI). To ensure purity,

they were streaked two times on YHBHI-agar. Purity was

examined by comparison of colony morphology and cell

morphology after Gram-staining. Gram-stains were con-

firmed by means of the KOH-test (Gregerson, 1978). Strains

were incubated on YHBHI-agar under aerobic conditions to

check for the presence of aerobic contaminants.

Culturemedia for isolationand conversion
experiments

Media were prepared using strictly anaerobic techniques.

The media Mt-6 and Mt-75, as well as Salt 1 solution, Salt 2

solution, and trace element solution 2, have been described

previously (Clavel et al., 2005).

Medium Mt-3 contained per litre: 4 g NaHCO3, 0.5 g

sodium acetate � 3H2O, 0.5 g sodium formate, 0.5 g cys-

teine �HCl �H2O, 0.3 g yeast extract, 1 mg resazurin, 100 mL

10-fold-concentrated basal solution (154.9 mM Na2HPO4,

100 mM Na2HPO4, 57.4 mM NH4Cl, 24.1 mM K2HPO4,

11.8 mM KH2PO4 and 8.3 mM MgSO4) (Diekert, 1992),

20 mL trace element solution 1 (Diekert, 1992), 10 mL

rumen fluid and 1 mL vitamin solution (Diekert, 1992).

SDG was added to a final concentration of 500 mM. The pH

was adjusted to 7.5, the medium was gassed with 80% N2

plus 20% CO2 (volume in volume, v/v) and autoclaved at

121 1C for 15 min.

Medium Mt-61 was modified after Mt-6. Concentrations

were adjusted as follows: rumen fluid, 3.5% (v/v); yeast

extract, 500 mg L�1; sodium acetate and sodium formate,

800 mg L�1 each; haemin, 0.25 mg L�1. Medium Mt-61 was

not supplemented with glucose and fructose.

Medium Mt-85 contained per litre: 500 mg cysteine �
HCl �H2O, 250 mg sodium formate, 250 mg Na2S � 9H2O,

50 mg yeast extract, 1 mg resazurin, 1 mL rumen fluid, 1 mL

vitamin solution (Diekert, 1992), 100 mL Salt 1 solution,

2 mL Salt 2 solution, and 0.1 mL trace element solution 2.
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Fig. 1. Chemical structure of secoisolariciresinol diglucoside and its bacterial metabolites.
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SDG was added to a final concentration of 500mM. The pH

was adjusted to 7.6 and the medium was gassed and

autoclaved as described above.

IsolationofSDG-deglycosylatingand
ED-dehydrogenatingbacteria

All steps were carried out using strictly anaerobic techni-

ques. Incubations were performed at 37 1C. Faeces were

obtained from a healthy male adult with dominant enter-

olignan-producing bacterial communities, as determined by

most probable number enumerations (Clavel et al., 2005).

Faecal dilutions were prepared as described previously

(Clavel et al., 2005). The purity of isolates was ensured as

described for strains from culture collections.

The isolation of SDG-deglycosylating bacteria was per-

formed in an anaerobic chamber (MACS variable atmo-

sphere workstation, Don Whitley Scientific, Shipley, UK).

Faecal dilutions were spread-plated onto Mt-85 supplemen-

ted with 14 g L�1 agar. Plates were incubated for 103 h.

Twenty-two colonies from the 10�3, 10�4 and 10�5 faecal

dilutions were picked and cultured in peptone–yeast–glu-

cose broth (medium no. 104, DSMZ, Braunschweig, Ger-

many). The resulting cultures were subsequently used in

conversion experiments to test their ability to convert SDG.

For isolation of ED-dehydrogenating bacteria, handling

of samples was performed in an anaerobic tent (Coy

Laboratory Products, Grass Lake, MI). Mt-6 and Mt-61

media were supplemented with 15 mL sterile-filtered stock

solution of ED. A 10-fold faecal dilution (50mL) was

incubated for 24 h in 1.5 mL Mt-6 broth. A volume of 50 mL

of the faecal culture was transferred once in 1.5 mL Mt-6 and

then twice in 1.5 mL Mt-61, every time after 24 h of growth.

The conversion of ED was monitored after each transfer by

liquid chromatography. Serial dilutions of the final

ED-converting enrichment (10�1–10�6) were spread-plated

twice onto Mt-61 supplemented with 14 g L�1 agar. In total,

39 single colonies were picked after 62 and 86 h of growth.

None of the selected colonies converted ED. However, not all

bacteria that grew on the plates formed distinct colonies.

Some grew as fine smears. Dehydrogenation of ED was

observed after incubation of such smears, which were

streaked onto Columbia- (5% sheep blood, Biomérieux,

Marcy l’Etoile, France), PYG- and Wilkins–Chalgren-agar

(Oxoid, Hampshire, UK) to support better growth. After

95 h of growth, bacteria were picked from the edge of 32

colonies and tested for ED dehydrogenation.

Conversionexperimentswith pure culturesand
isolated strains

To test for the deglycosylation of SDG, 50mL overnight

liquid cultures were incubated in 1.5 mL Mt-3 broth. To test

for the demethylation of SECO or the dehydrogenation of

ED or SECO, 50 mL overnight liquid cultures or bacteria

from isolated colonies were incubated in 1.5 mL Mt-6 broth

containing 1 mM SECO or 500 mM ED. To test for dehy-

droxylation of SECO, 20mL overnight cultures of each of P.

productus SECO-Mt75m3 and the dehydroxylating candi-

date strain were co-incubated in 1 mL Mt-75 broth contain-

ing 1 mM SECO. Incubations were performed at 37 1C.

Controls consisted of bacteria in media without substrate

and media containing substrate without bacteria. Samples

were collected after approximately 24 and 48 h of growth

and kept at �20 1C until liquid chromatography analysis.

High-performance liquid chromatography
(HPLC)

Samples were centrifuged (13 000 g, 3 min) and the super-

natants were further analysed. Separation was carried out

with a RP-18 column (Lichrocarts Lichrosphers100,

250� 4 mm, 5mm, Merck, Darmstadt, Germany) main-

tained at 37 1C and protected with a guard RP-18 column

(4� 4 mm, 5 mm). The gradient elution was modified after

Nurmi et al. (2003). Eluents were: A, 80% 50 mM sodium

actetate (adjusted to pH 5 with 100% acetic acid) plus 20%

MeOH (v/v); B, 40% 50 mM sodium acetate plus 40%

MeOH and 20% acetonitrile (v/v/v). The gradient was

20%–80% B within 10 min, 80%–100% B within 14 min,

100% B for 5 min, and back to 20% B within 1 min. The

system was equilibrated with 20% B for 10 min at the end of

each run. The flow rate was 0.3 mL min�1 and the injection

volume was 20 mL. Lignans were detected at 285 nm using a

UV diode array detector. The Chromeleon software version

6.40 (Dionex, Idstein, Germany) was used for data acquisi-

tion and analysis. The retention times of standard lignans

were: SDG, 17.2 min; SECO, 22.2 min; ED, 25.2 min; EL,

28.5 min. Metabolites were identified by comparison with

the retention times and spectra of standards. The molecular

mass of peaks, for which no standards were available, was

determined by electrospray ionization mass spectrometry

(ESI-MS).

ESI-MS experiments

A triple quadrupole mass spectrometer fitted with a Z-spray

API electrospray source (Quattro II, Micromass, Manche-

ster, UK) was used. Metabolites were separated by HPLC as

described above. Downstream of the column, the flow was

split (6 : 1) so that a continuous flow of 0.05 mL min�1 was

directed into the spectrometer. MS analyses were carried out

in negative ionization mode. The temperature of the ion

source was 120 1C. The cone and capillary voltages were 25 V

and 3.0 kV, respectively. The desolvation temperature was

380 1C, and the desolvation gas (N2) was maintained at

400 L h�1. Data were analysed using the Mass Lynx 3.5

software (Micromass).
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IdentificationofSDG-converting isolatesand
maintenanceof bacterial strains

Pure isolates were identified by 16S rRNA gene sequence

analyses as described previously (Clavel et al., 2005). PCR

products were also sent to AGOWA (Berlin, Germany) for

sequencing with primers 27f (50 AGAGTTTGATCCTGGCT-

CAG) and 1492r (50 TACCTTGTTACG ACT T) (Kageyama

et al., 1999). Similarities were calculated following the

unambiguous alignment of consensus 16S rRNA gene

sequences. Scanning electron micrographs of the isolates

were obtained as described previously (Grund et al., 1995).

Cryostocks of isolated cultures were maintained in Micro-

bank tubes (MAST Diagnostica, Reinfeld, Germany) accord-

ing to the manufacturer’s instructions and stored at

�80 1C. For all strains, working stocks were maintained in

YHBHI broth and subcultured every two to three weeks.

Purity controls consisted of microscopic observations of

Gram-stained bacterial cells.

Results anddiscussion

IdentificationofSDG-deglycosylating bacteria

Four SDG-deglycosylating strains were isolated from human

faeces. The 16S rRNA gene sequence of a Gram-positive

helically coiled rod (1416 nucleic acids) showed 99.4%

similarity with Clostridium sp. 14774 (GenBank accession

no. AJ315981) and 96.7% similarity with Clostridium coclea-

tum DSM 1551T (Y18188). Figure 2 shows the conversion of

SDG to SECO by the isolate, referred to as Clostridium sp.

SDG-Mt85-3Db (DQ100445). In addition, the 16S rRNA

gene sequence of one Gram-negative rod-shaped isolate

(1355 nucleic acids) showed 99.7% similarity with Bacter-

oides ovatus DSM 1896T (X83952). The organism was

named B. ovatus SDG-Mt85-3Cy (DQ100446). Finally, the

16S rRNA gene sequences of two other Gram-negative rod-

shaped isolates (1426 nucleic acids) showed 98.5% similarity

with Bacteroides fragilis DSM 2151T (X83935). The organ-

isms were named B. fragilis SDG-Mt85-4C (DQ100447) and

SDG-Mt85-5B (DQ100448). Four additional strains from

culture collections deglycosylated SDG: Bacteroides distaso-

nis DSM 20701T, B. fragilis DIfE-05, C. cocleatum DSM

1551T and Clostridium ramosum DSM 1402T. Thus, five out

of eight SDG-deglycosylating strains belong to Bacteroides

species, which have been extensively studied for their ability

to metabolise sugars, indigestible polysaccharides and gly-

cosylated compounds (Bokkenheuser et al., 1987; Backhed

et al., 2005). Since the genus Bacteroides is one of the most

prevailing and prevalent bacterial genera in the human

intestinal tract, it is reasonable to assume that the identified

Bacteroides species play a major role in SDG deglycosylation

(Rigottier-Gois et al., 2003; Eckburg et al., 2005).

IdentificationofSECO-demethylatingbacteria

Five strains from culture collections demethylated SECO:

Bacteroides methylotrophicum DSM 3468T, Eubacterium call-

anderi DSM 3662T, Eubacterium limosum DSM 20543T,

Peptostreptococcus productus DSM 2950T and P. productus

DSM 3507. Figure 3 shows the demethylation of SECO by P.

productus DSM 2950T. The previously isolated strain P.

productus SECO-Mt75m3 was not able to demethylate SDG

(data not shown). All the SECO-demethylating strains

belong to the functional group of acetogens, which produce

acetate at the expense of H2 plus CO2. Some acetogens also

utilize methyl groups from various compounds for acetate

formation (Frazer, 1994; Hur & Rafii, 2000). Two non-

methane-excreting individuals were previously shown to

harbour 7.2� 107 and 3.1� 108 acetogens g�1 wet faeces

(Dore et al., 1995). Besides, the occurrences of P. productus

and E. limosum reported in the literature using PCR or

fluorescent in situ hybridization are in the range of approxi-

mately 108 CFU g�1 as revealed previously by most probable

number enumerations of ED-producing bacteria (Wang

et al., 1996; Kageyama & Benno, 2001; Clavel et al., 2005).

Since three strains of P. productus demethylated SECO, the

activity appears to be conserved within this species. In

contrast, a number of functional or phylogenetic relatives

of E. limosum and P. productus did not demethylate SECO.
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Fig. 2. Deglycosylation of secoisolariciresinol diglucoside by the newly

isolated strain Clostridium sp. SDG-Mt85-3Db grown in Mt-3 broth.

Samples were collected at the times indicated on the chromatograms

and supernatants were analysed by high-performance liquid chromato-

graphy. The deglycosylation of secoisolariciresinol diglucoside led to the

formation of secoisolariciresinol, via compound A (19.6 min). The mole-

cular mass of A was 524 g mol�1, as determined by mass spectrometry. It

corresponds to secoisolariciresinol diglucoside with one glucose mole-

cule removed. The bar in the photograph represents 5 mm.
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IdentificationofSECO-dehydroxylatingbacteria

When co-incubated with P. productus SECO-Mt75m3, two

strains from culture collections catalysed the dehydroxyla-

tion of SECO: Clostridium scindens DSM 5676T and E. lenta

DSM 2243T. Figure 4 illustrates the dehydroxylation of

SECO by Eggerthella lenta DSM 2243T. The previously

isolated strain Eg. lenta SECO-Mt75m2 incubated alone in

Mt-6 did not show any activity towards SECO (data not

shown). Early molecular studies showed that C. scindens and

Eg. lenta, which both belong to the functional group of

biliary steroid-metabolising bacteria, are common members

of the human intestinal microbiota (Bokkenheuser et al.,

1979; Doerner et al., 1997; Schwiertz et al., 2000; Kitahara

et al., 2001). Besides, as in the case of SECO demethylation

by P. productus, the dehydroxylation activity was observed

for several strains of Eg. lenta.

IdentificationofED-dehydrogenatingbacteria

One Gram-positive rod-shaped strain capable of dehydro-

genating ED was isolated from faeces (Fig. 5). Its 16S rRNA

gene sequence (1437 nucleic acids) showed 93.6% similarity

with Clostridium amygdalinum DSM 12857T (AY353957)

and 93.4% similarity with Clostridium saccharolyticum DSM

2544T (Y18185). The organism is referred to as strain ED-

Mt61/PYG-s6 (DQ100449). It was not able to dehydro-

genate SECO (data not shown). The most probable number

enumerations of approximately 3� 105 CFU g�1 dried faeces

for EL-producing bacteria suggest that the isolate belongs to

subdominant communities (Clavel et al., 2005).

Overviewofthe identifiedSDG-activating
bacteria

Figure 6 illustrates the phylogenetic relationships of the

SDG-converting anaerobic bacteria identified in this study.

Sixteen strains from the human intestinal tract have been

shown to contribute to the conversion of SDG. Two other

SECO-demethylating organisms, Butyribacterium methylo-

trophicum and E. callanderi, are not known yet as members

of the intestinal microbiota. Thus, the production of EL

requires the interaction of phylogenetically and functionally
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Fig. 3. Demethylation of secoisolariciresinol by Peptostreptococcus pro-

ductus DSM 2950T grown in Mt-6 broth. The demethylation of seco-

isolariciresinol led to the formation of compound C (18.0 min), via

compound B (20.2 min). The molecular mass of B was 348 g mol�1, as

determined by mass spectrometry. It corresponds to secoisolariciresinol
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bis(3,4-dihydroxybenzyl)butene-1,4-diol by comparison with the reten-

tion time and the spectrum of the standard. It lacks the two methoxy

groups of secoisolariciresinol.
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of Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta

DSM 2243T grown in Mt-75 broth.
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distantly related species, most of which are members of the

dominant intestinal microbiota. Variations in their propor-

tions within intestinal communities of different human

subjects may explain the large interindividual differences

observed previously with regard to the occurrence of SECO-

converting bacteria and enterolignan production (Clavel

et al., 2005). With 11 species falling into six different genera,

SDG-converting intestinal bacteria exhibit a relatively high

diversity. Among the isolated organisms, Clostridium sp.

SDG-Mt85-3Db and strain ED-Mt61/PYG-s6, which degly-

cosylated SDG and dehydrogenated ED, respectively, may be

one new species and one new genus, on the basis of their 16S

rRNA gene sequences (Stackebrandt & Goebel, 1994).

Further biochemical, enzymatic and molecular experiments
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converting strains tested are marked with a

superscript ‘� ’. The GenBank accession num-

bers of the sequences used to construct the tree

are indicated in brackets. Sequences were

aligned using the Vector NTI Suite 9.0.0, and the

tree was constructed with Clustal X 1.8 using

bootstrap values calculated from 1000 trees.
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Fig. 7. Formation of enterolactone from secoisolariciresinol diglucoside

by a co-culture of Clostridium sp. SDG-Mt85-3Db, Peptostreptococcus

productus SECO-Mt75m3, Eggerthella lenta SECO-Mt75m2 and strain

ED-Mt61/PYG-s6 grown in Mt-6 broth. The molecular mass of D was

330 g mol�1, as determined by mass spectrometry. It corresponds to

matairesinol, the lactone form of secoisolariciresinol, with its two

methoxy groups removed.
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will be performed for a complete description of these

organisms. The fact that several species catalyse the same

reaction towards SDG and that the conversion potential

seems to be wide-spread among different strains of one

species may explain the high prevalence of enterolignan

production in humans (Clavel et al., 2005).

The incubation of SDG with four of the identified

organisms, one for each of the four reactions of SDG

conversion, led to the formation of EL (Fig. 7). Figure 7 also

illustrates the possible identification of a new intermediate

in the formation of EL from SDG. Thus, the newly isolated

strain ED-Mt61/PYG-s6 might not only catalyse the dehy-

drogenation of ED, but also the dehydrogenation of SECO

lacking its two methoxy groups.

Conclusion

Eleven species previously unknown for their role in the

anaerobic conversion of SDG have been identified. They

may be of use for the biotechnological production of EL, the

commercial availability of which is restricted. The study was

deliberately limited to a qualitative description of the

bacterial conversion of SDG. Furthermore, our results do

not exclude the possibility that other bacteria may contri-

bute to the conversion of SDG. However, the identified

bacteria are now useable as models to characterize the

mechanisms of EL production in more detail. In parallel,

their relevance could be assessed by the design and optimi-

zation of specific 16S rRNA-targetting probes or primers.

Such approaches may form the basis of future animal

experiments or human intervention studies to assess the

influence of changes in SDG-activating microbial commu-

nities on the in vivo bioavailability and activity of the

oestrogen-like compounds ED and EL.
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